

2021
Drinking Water
Quality Report

A Message from the Executive Director

ach year, Cape Fear Public Utility Authority produces this Water Quality Report to give you, our customers, important information about your drinking water. From Ogden and Castle Hayne to downtown Wilmington and Monkey Junction, you can find water quality information specific to your service area in the following pages.

Consider this our report card for 2021. Every day of the year, CFPUA's staff works hard to provide our community with the highest quality drinking water at the lowest practicable cost. In this report, you can read about how our water quality staff, water treatment operators, laboratory staff, engineers, construction and maintenance teams, and other employees across CFPUA work together to meet and exceed the many standards set by the U.S. Environmental Protection Agency and the State of North Carolina.

A major issue for water utilities across the country is addressing lead in water service lines as EPA updated its Lead and Copper Rule late last year. Earlier in 2021, CFPUA proactively launched a survey of water service lines in the oldest part of our service area, from downtown Wilmington to Sunset Park. You can read about this project on page 10 of this report.

Last year, staff also enhanced corrosion control in the Monterey Heights service area through the addition of orthophosphate to the water treatment process. An overview of this initiative can be found on page 11.

While there was much to celebrate in 2021, the coming year will bring even bigger milestones in water treatment at CFPUA. In mid-2022, we will complete our \$43 million enhancements project at the Sweeney Water Treatment Plant. The addition of eight deepbed Granular Activated Carbon (GAC) filters at Sweeney will make the plant highly effective at removing PFAS compounds such as GenX. Visit www.CFPUA.org/Sweeney to learn more about this major investment in the quality of our community's drinking water.

I am proud to share these water quality results with you and hope you will share this report with your friends, family, and other members of our community served by CFPUA.

Theshirty

Table of Contents

Your Water Service Area	4
Protecting Your Water	6
Lead and Home Plumbing	8
Water Disinfection and Health Effects	9
Lead Service Lines and Corrosion Control	10
Glossary of Drinking Water Terms	12
Sweeney System Results	14
Richardson System Results	22
Monterey Heights System Results	28

Share this Report

This report contains information on drinking water that may be of interest to your family, friends, and others you know in our community. To share a digital copy of this report, use the following link: www.CFPUA.org/2021WaterQuality

To receive a printed copy of this report, please email: **Communications@cfpua.org.** You may also contact us on our social media accounts to ask for a copy of this report.

En Español

Para obtener una copia del informe en Español sobre los resultados más recientes de la calidad del agua publicado por el Cape Fear Public Utility Authority, llame al 910-332-6550.

Your Water Service Area

This report includes drinking water quality results for CFPUA's three water distribution systems.

Results from this testing period found that our drinking water continues to meet or exceed federal and state regulatory standards. These standards are designed to protect public health and the taste and appearance of drinking water.

Cape Fear Public Utility Authority is required by the Environmental Protection Agency to produce an Annual Water Quality Report for its customers. However, this report goes beyond basic requirements and provides you with interesting information on the water systems that serve your home, workplace, and the places you visit for entertainment and community services. We hope you find it informative and educational.

If you have any questions about this report or concerning your water, please contact **CFPUA's Water Treatment Division at 910-332-6739**.

We want our valued customers to be informed about their water utility. If you want to learn more, consider attending an Authority Board Meeting on the second Wednesday of each month at 9 a.m. in Room 601 of the New Hanover County Government Center Complex.

New Hanover County

Richardson Water System (CFPUA/NHC system PWS ID# 04-65-

232): CFPUA's second-largest system, which distributes water in northern New Hanover County in areas including Murrayville, Northchase, Porters Neck, and parts of Castle Hayne and Ogden. Water is provided via the Richardson Water Treatment Plant using groundwater sourced from the Castle Hayne and PeeDee aquifers.

Sweeney Water System

(CFPUA/Wilmington system PWS ID# 04-65-010): CFPUA's largest system, which distributes water within the City of Wilmington, parts of the Ogden area, Monkey Junction/Independence Boulevard (including Pine Valley, Echo Farms, Barclay, Crosswinds, and Lake Brewster), Kings Grant, Tarin Woods, River Lights, U.S. 421, and Wrightsboro. Water is provided via the Sweeney Water Treatment Plant using source water from the Cape Fear River.

Monterey Heights Water System (CFPUA/Monterey Heights system PWS ID# 04-65-

137): CFPUA's smallest system, which distributes water in southern New Hanover County in areas including Monterey Heights, Woodlake, Laurel Ridge, Sentry Oaks, and Veterans Park. Groundwater is sourced from the Castle Hayne aquifer and distributed by a series of wells. This system differs from our two other drinking water systems in that it does not rely on a centralized water treatment plant.

Protecting Your Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Cape Fear Public Utility Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Across the nation, rivers, lakes, streams, ponds, reservoirs, springs, and wells are sources of drinking water (both tap and bottled). As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up contaminants resulting from animal or human activity. Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the amounts of certain contaminants in water provided by public water systems. FDA regulations establish limits for substances in bottled water to provide protection for public health.

Lead and Home Plumbing

ead in drinking water has been a concern in the water and wastewater industries for decades. The primary sources of lead in drinking water are corrossion in drinking water pipes and household plumbing and appliances maintained by homeowners.

In 1991, the EPA introduced the Lead and Copper Rule (LCR) to ensure public water suppliers manage lead and copper in drinking water. Public water suppliers have several tools to make sure they are meeting the requirements of this rule.

To effectively monitor and manage lead and copper in drinking water, public water suppliers often implement corrosion-control measures. CFPUA staff regularly test lead and copper levels in homes and businesses across the service area, and operators introduce orthophosphate into the water systems to line pipes and add more protection.

CFPUA's corrosion-control program has successfully managed the threat of lead in our drinking water. However, we cannot control the variety of materials used in internal plumbing components—the private parts of water systems that are owned and maintained by home and business owners.

In older areas of New Hanover County, homes may rely on aging plumbing systems that haven't been updated to meet newer standards. When internal plumbing components contain lead, residents and customers are more likely to be exposed to these metals as they leach into drinking water from faucets and other plumbing materials.

Reducing Lead Exposure at Home

- Use only cold water for drinking, cooking, and making baby formula (boiling water does not remove lead from water).
 - Regularly clean your faucet's screen (also known as an aerator).
 - Before use, flush your pipes by running your tap.
 - Contact CFPUA to learn more about sources of lead and removing lead service lines.

Water Disinfection and Health Effects

Disinfecting source water is a critical part of any water treatment process. Chlorine and other disinfectants eliminate water-borne pathogens such as Giardia, Cryptosporidium, E. Coli, bacteria, and viruses. These microbial pathogens are known to cause gastrointestinal illnesses and other health issues. Because these pathogens are found in the Cape Fear River, the water source for the Sweeney Water Treatment Plant, CFPUA uses UV technology and chlorine to disinfect your water prior to its distribution. The Richardson and Monterey Heights water systems also undergo chlorine disinfection.

Chlorine treatment has proven to be a transformative achievement in public health. Introduced as the solution to the 1850 cholera epidemic in London, chlorine became a widely used water disinfectant by the 1900s. Chlorine was first used in the United States as a major water disinfectant in 1908 in Jersey City, New Jersey. By 1995, 64% of all community water systems in the country used chlorine to disinfect water.

Unfortunately, chlorine and other disinfectants may cause problems once in the distribution system. They can react with naturally occurring compounds in water to form byproducts such as Trihalomethanes (THM), Haloacetic acids (HAA), Chlorite, and Bromate. According to the EPA, some disinfection byproducts are "suspected to cause bladder cancer and reproductive effects in humans." To ensure that public water suppliers such as CFPUA provide clean drinking water, the U.S. Environmental Protection Agency (EPA) developed the Stage 2 Disinfection Byproduct rule.

CFPUA developed a plan to not only meet but surpass state and federal regulations. As part of the plan, 5 tank mixers and 17 floating aeration systems have been installed at the Sweeney Plant as well as elevated storage tanks within the Sweeney System. These systems reduce the disinfection byproducts already formed by spraying fine, uniform particles of water into the air. This process allows these volatile compounds to escape into the atmosphere and be removed from customers' water.

CFPUA also practices routine water system flushing. This helps maintain water pressure and pipe integrity and minimizes the formation of disinfection byproducts. During flushing, water is forced through pipes and out of fire hydrants at a high velocity, removing accumulated mineral sediment until the water is clear. Because disinfection byproducts are more easily formed at high temperatures, CFPUA conducts increased flushing during the summer months.

CFPUA conducts sampling to confirm that these protocols effectively reduce disinfection byproducts and ensure compliance with state and federal requirements.

Getting the Lead Out

The 2014 Flint, Michigan water crisis prompted lawmakers to reexamine the nation's standards for lead and copper in drinking water. Now that the U.S. Environmental Protection Agency has rolled out its updated Lead and Copper Rule, CFPUA is proactively surveying our water lines years ahead of the compliance deadline.

Lead in drinking water can usually be traced to old plumbing fixtures in homes and water service lines made from lead. A service line is the pipe connecting your private property to the public water supply. Corrosion of older service lines, particularly those installed before the 1950s, is a concern for all water utilities.

For years, CFPUA has had a Corrosion-Control Program that is highly effective at preventing pipes from leaching metals, especially lead. Orthophosphate, a corrosion-inhibiting mineral that is safe to drink, creates a protective coating on pipes as it flows through CFPUA's water system and is the key to the successful Corrosion-Control Program that provides the time to survey the services lines in the water system. (*Read more on the following page*). CFPUA's Lead and Copper Sampling Program also ensures corrosion control is working effectively by having staff work with our customers to sample water from homes across our system.

The new EPA standards require utilities to complete an inventory of their water service lines by fall 2024, with future timetables for replacement of some service lines. Rather than wait for the deadline, CFPUA staff launched the start of our inventory in 2021. Phase 1 of the inventory focused on the area from downtown Wilmington's Northside to Sunset Park, one of the oldest parts of CFPUA's service area that is, therefore, more likely to have pre-1950s service lines. Phase 1 included the survey of approximately 10,500 properties, with important data collected on specific service line locations and materials.

The next phases of CFPUA's Lead and Copper plan include surveying the other parts of our service area, creating a public database of water service line materials, including lead, and a collaborative effort of planning for the replacement of lead lines.

To learn more about the EPA's Lead and Copper Rule, visit epa.gov/dwreginfo/lead-and-copper-rule.

...and corrosion control

CFPUA's smallest water system received several important updates this past year. The Monterey Heights Water System is located in southern New Hanover County and serves just under 10,000 people in and around Monterey Heights. Only about 5% of the water CFPUA delivers each day to customers comes from the Monterey Heights System, which sources and treats groundwater from the Castle Hayne aquifer.

In 2021, CFPUA added treatment systems to each Monterey Heights source well to provide corrosion control protection through the addition of an orthophosphate blended product.

Advanced monitoring and control systems were also installed at each water source for Monterey Heights, allowing enhanced monitoring and control of the treatment process at each production well. A booster pump station was also installed, which will allow CFPUA to provide water to Monterey Heights from the Sweeney System during periods of high demand or when water sources are down for maintenance. CFPUA also installed advanced water softening treatment systems at two source wells. This will allow the characteristics of water provided by the Monterey Heights System to match those of water from the Sweeney System in the event Sweeney is called upon as an emergency water source.

As development booms in southern New Hanover County and customer water demand increases, or in the event of a water shortage in the Monterey Heights Water System, the addition of the orthophosphate and the source water softening systems would allow the interconnection between Monterey Heights and CFPUA's much larger Sweeney Water Treatment System (which has long contained an orthophosphate) to be used to meet the need with a similar water quality.

For a full list of water quality characteristics, see pages 28-30.

Glossary of Drinking Water Terms

Action Level (AL) - The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment - A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Locational Running Annual Average (LRAA)

 The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters under the Stage 2 Disinfectants and Disinfection Byproducts Rule.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) -

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfection Level (MRDL)

- The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfection Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Million Fibers per Liter (MFL) - Million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.

Nephelometric Turbidity Unit (NTU) - Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Not-Applicable (N/A) - Information not applicable/not required for that particular water system or for that particular rule.

Non-Detects (ND) - Laboratory analysis indicates that the contaminant is not present at the level of detection set for the particular methodology used.

Parts per million (ppm) or Milligrams per liter (mg/L) - One part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/L) - One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (ng/L) - One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Parts per quadrillion (ppq) or Picograms per liter (picograms/L) - One part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000.

Picocuries per liter (pCi/L) - Picocuries per liter is a measure of the radioactivity in water.

Secondary Maximum Contaminant Level (SMCL) - The highest level of a contaminant that is allowed in drinking water under the EPA's National Secondary Drinking Water Regulations. These non-mandatory regulations provide standards for aesthetic considerations in water, such as taste, color, and odor. These contaminants are not considered to present a risk to human health.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

2021 Drinking Water Quality Results – PWS ID# 04-65-010, Sweeney Water System

We routinely monitor for over 150 contaminants in your drinking water according to Federal and State laws. The tables below list all the drinking water contaminants that we detected in the last round of sampling for each particular contaminant group. The presence of contaminants does not necessarily indicate that water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2021. The EPA and the State allow us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Microbiological | Inorganic Contaminants | Other Disinfection Byproducts | Disinfection Residuals Summary

Contaminant (units)	Contaminant Type	Reporting Basis	Your Water	Sample Date	MCL/ MRDL Violation	Range Low - High	MCLG/ MRDL	MCL	Likely Source of Contamination
Total Coliform Bacteria	Microbiological Contaminants in the Distribution System	N/A	N/A	2021	NO	N/A	N/A	TT*	Naturally present in the environment
E. coli	Microbiological Contaminants in Distribution System	Highest Monthly Percent of Positive Samples	0%	2021	NO	N/A	0	**	Human and animal fecal waste
Fluoride (ppm)	Inorganic Contaminants	Highest Compliance Result	0.66	2019 2020 2021	NO	0.1 – 0.66	4	4	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizers and aluminum factories
Thallium (ppb)	Inorganic Contaminants	Highest Compliance Result	1.0	2019 2020 2021	NO	ND - 1.0	0.5	2	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories
Bromate (ppb)	Other Disinfection Byproducts	Highest Compliance Result	1.7	2021	NO	ND – 1.7	0	10	Byproduct of drinking water disinfection
Chlorine (ppm)	Disinfection Residuals Summary	Highest Running Annual Average	1.11	2021	N/A	0.2 – 1.89	4	4	Water additive used to control microbes

^{*}If a system collecting fewer than 40 samples per month has two or more positive samples in one month, an assessment is required.

^{**}Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. If either an original routine sample and/or its repeat sample(s) are *E. coli* positive, a Tier 1 violation exists.

Turbidity

Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system. The turbidity rule requires that 95% or more of the monthly samples must be less than or equal to 0.3 NTU.

Contaminant (units)	Reporting Basis	Your Water	Sample Date	TT Violation	Likely Source of Contamination
Turbidity (NTU)	Highest Single Measurement	0.218	2021	NO ¹	Soil Runoff
Turbidity (NTU)	Lowest Monthly Percent of Sample Meeting Limits	100%	2021	NO ²	Soil Runoff

Lead & Copper

Contaminant (units)	Reporting Basis	Your Water	Sample Date	# Sites Above AL	MCLG	Action Level	Likely Source of Contamination
Copper (ppm)	90th percentile	0.150	2020	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits
Lead (ppb)	90th percentile	< 3	2020	0	0	15	Corrosion of household plumbing systems; erosion of natural deposits

Total Organic Carbon

Contaminant (units)	Contaminant Type	Reporting Basis	Your Water	Sample Date	TT Violation	Range Low - High	Compliance Method	Likely Source of Contamination
Total Organic Carbon [TOC Treated] (removal ratio)	Disinfection Byproduct Precursors – TOC	RAA Removal Ratio	1.86	2021	NO	68% – > 85%	Step 1	Naturally present in environment

 $[\]frac{1}{2}$ TT Violation if: Turbidity > 1 NTU. $\frac{1}{2}$ TT Violation if: Less than 95% of monthly turbidity measurements are < 0.3 NTU.

Disinfection Byproduct Compliance

Some people who drink water containing trihalomethanes (TTHM) in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer. Some people who drink water containing haloacetic acids (HAA5) in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection Byproduct	Your Water (LRAA)	Date Sampled	MCL Violation	Range Low - High	MCL	Likely Source of Contamination
ТТНМ (ppb)	35.9	2021	NO	22.0 – 35.9	80	Byproduct of drinking water disinfection
B01	24.6	2021	NO	16.7 – 32.7	80	
B02	22.0	2021	NO	12.8 – 32.6	80	
B03	23.1	2021	NO	12.6 – 34.5	80	
B04	25.7	2021	NO	13.5 – 39.7	80	
B05	22.4	2021	NO	13.4 – 33.7	80	
B06	29.1	2021	NO	15.3 – 39.9	80	
B07	35.9	2021	NO	20.0 – 52.1	80	
B08	25.1	2021	NO	13.5 – 36.3	80	
HAA5 (ppb)	15.7	2021	NO	9.6 – 15.7	60	Byproduct of drinking water disinfection
B01	11.3	2021	NO	6.8 – 22.6	60	
B02	11.5	2021	NO	3.6 – 21.5	60	
B03	10.3	2021	NO	3.6 – 22.1	60	
B04	11.2	2021	NO	3.4 – 24.7	60	
B05	9.6	2021	NO	3.4 – 20.8	60	
B06	13.5	2021	NO	5.7 – 24.5	60	
B07	15.7	2021	NO	7.0 – 26.9	60	
B08	11.2	2021	NO	4.2 – 23.0	60	

Water Characteristics Contaminants

Secondary Substances, required by the NC Public Water Supply Section, are substances that affect the taste, odor, and/or color of drinking water. These aesthetic substances normally do not have any health effects and normally do not affect the safety of your water.

Contaminant (units)	Reporting Basis	Your Water	Sample Date	Range Low - High	SMCL
Iron (ppm)	Highest Compliance Result	0.53	2019 2020 2021	ND – 0.53	0.3 mg/L
Manganese (ppm)	Highest Compliance Result	0.017	2019 2020 2021	ND - 0.017	0.05 mg/L
pH (standard units)	Highest Compliance Result	8.1	2019 2020 2021	7.2 – 8.1	6.5 to 8.5
Sodium (ppm)	Highest Compliance Result	37	2019 2020 2021	12 – 37	N/A
Sulfate (ppm)	Highest Compliance Result	36	2019 2020 2021	ND – 36	250 mg/L

Unregulated Contaminants

The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

1,4-Dioxane

1,4-Dioxane is a likely human carcinogen, according to the U.S. EPA, and has been found in groundwater at sites throughout the United States. The physical and chemical properties and behavior of 1,4-dioxane create challenges for its characterization and treatment. It is highly mobile and does not readily biodegrade in the environment.

Contaminant (units)	Sample Date	Your Water Average	Range Low - High	Health Information
1,4-Dioxane (ppb)	2021	0.45	ND – 2.20	EPA established a 1-day health advisory of 4000 ppb and a 10-day health advisory of 400 ppb for a 10-kg child and a lifetime health advisory of 200 ppb in drinking water

Per- and Polyfluoroalkyl Substances (PFAS)

PFAS are found in a wide range of consumer products that people use daily such as cookware, pizza boxes, and stain repellants. Most people have been exposed to PFAS. Certain PFAS can accumulate and stay in the human body for long periods of time. There is evidence that exposure to PFAS can lead to adverse health outcomes in humans. The most-studied PFAS chemicals are PFOA and PFOS. Studies indicate that PFOA and PFOS can cause reproductive and developmental, liver and kidney, and immunological effects in laboratory animals. Both chemicals have caused tumors in animals.

Contaminant (units)	Sample Date	Your Water Average	Range Low - High	Health Information
GenX (ppt)	2021	7.35	2.58 – 16.1	NC DHHS health goal is 140 ppt
PFOS (ppt)	2021	2.08	0.638 – 5.31	70 ppt EPA Health Advisory for Total
PFOA (ppt)	2021	2.53	0.893 – 7.35	Combined Concentration of PFOA and PFOS
NVHOS (ppt)	2021	2.51	ND – 9.77	None
PFEESA (ppt)	2021	0.010	ND – 0.292	None
10:2 FTS (ppt)	2021	0.007	ND - 0.214	None
PMPA (ppt)	2021	10.3	4.35 – 17.0	None
NFDHA (ppt)	2021	0.010	ND - 0.309	None
PFUdA (ppt)	2021	0.004	ND - 0.121	None
N-methylperfluoro-1- octanesulfonamidoacetic acid (ppt)	2021	0.008	ND – 0.233	None
Byproduct 4 (BP4); R-PSDA (ppt)	2021	8.42	ND – 39.7	None
Byproduct 5 (BP5); Hydrolyzed PSDA (ppt)	2021	7.96	2.97 – 26.8	None
Byproduct 6 (BP6); R-PSDCA (ppt)	2021	0.011	ND - 0.321	None
R-EVE (ppt)	2021	7.29	2.12 – 20.6	None
N-MeFOSE (ppt)	2021	0.113	ND – 3.39	None
PEPA (ppt)	2021	3.33	ND – 10.6	None
PFPeA (ppt)	2021	7.00	1.48 – 22.1	None

Contaminant (units)	Sample Date	Your Water Average	Range Low - High	Health Information
PFPeS (ppt)	2021	0.217	ND - 0.851	None
6:2 FTS (ppt)	2021	0.083	ND - 0.541	None
Nafion Byproduct 1 (ppt)	2021	0.006	ND - 0.191	None
N-ethylperfluoro-1- octanesulfonamidoacetic acid (ppt)	2021	0.008	ND – 0.226	None
FBSA (ppt)	2021	0.109	ND - 0.667	None
PFHxA (ppt)	2021	4.90	1.30 – 15.8	None
PFDoA (ppt)	2021	0.005	ND – 0.155	None
PFDA (ppt)	2021	0.051	ND - 0.298	None
PFHxS (ppt)	2021	1.31	ND – 4.09	None
PFBA (ppt)	2021	4.64	ND – 10.7	None
PFBS (ppt)	2021	2.70	0.615 – 8.71	None
PFHpA (ppt)	2021	1.96	0.624 – 5.53	None
PFHpS (ppt)	2021	0.022	ND – 0.255	None
PFNA (ppt)	2021	0.163	ND - 0.719	None
PFTeDA (ppt)	2021	0.007	ND - 0.213	None
PFMPA (ppt)	2021	0.314	ND – 2.72	None
8:2 FTS (ppt)	2021	0.008	ND – 0.229	None
PFO2HxA (ppt)	2021	6.70	2.22 – 12.3	None
PFO3OA (ppt)	2021	1.18	ND – 5.78	None
PFMOAA (ppt)	2021	37.3	4.92 – 79.7	None
PFNS (ppt)	2021	0.006	ND - 0.190	None
EVE Acid (ppt)	2021	0.013	ND - 0.376	None
PFTrDA (ppt)	2021	0.008	ND - 0.239	None

(Continued from previous page)

Contaminant (units)	Sample Date	Your Water Average	Range Low - High	Health Information
Nafion Byproduct 2 (ppt)	2021	0.041	ND – 0.386	None
PFOSA (ppt)	2021	0.011	ND - 0.325	None
9-chlorohexadecafluoro-3- oxanonane-1-sulfonate (ppt)	2021	0.007	ND – 0.216	None
4:2 FTS (ppt)	2021	0.005	ND – 0.146	None
PF3OUdS (ppt)	2021	0.008	ND – 0.242	None
Hydro-EVE (ppt)	2021	0.022	ND – 0.422	None
PFECA-G (ppt)	2021	0.005	ND – 0.165	None
PFMBA (ppt)	2021	0.175	ND – 3.67	None
ADONA (ppt)	2021	0.006	ND – 0.184	None
PPF Acid (ppt)	2021	30.3	17.0 – 44.0	None

NOTE: The PFAS contaminants listed in this report are those that were detected in one or more samples of treated water in 2021. For the full list of PFAS compounds for which CFPUA tests treated water, including those that were not detected in any 2021 samples, visit www.CFPUA.org/Sweeney and click on "Latest PFAS Test Results."

Physical and Mineral Characteristics

Contaminant (units)	Sample Date	Your Water Average	Range Low - High	
Hardness (ppm)	2021	23	16 – 35	
Alkalinity (ppm)	2021	20	11 – 27	
Conductivity (umhos/cm)	2021	169	116– 263	
Total Dissolved Solids (ppm)	2021	111	77 – 174	
Chloride (ppm)	2021	14	13 – 14	
Ortho Phosphate (ppm)	2021	0.97	0.70 – 1.50	
Total Phosphate (ppm)	2021	1.23	0.98 – 1.87	
Chlorate (ppb)	2021	37.5	29 – 46	
Perchlorate (ppb)	2021	0.08	0.06 - 0.10	

Source Water Assessment Program (SWAP)

As part of the Source Water Assessment Program (SWAP), the North Carolina Department of Environmental Quality's Public Water Supply Section conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information, and a relative susceptibility rating of Higher, Moderate, or Lower.

The relative susceptibility rating of each source for the Sweeney Water System was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings are summarized in the table below:

Source Name	Susceptibility Rating	SWAP Report Date		
Cape Fear River Kings Bluff	Moderate	2020		
Lower Cape Fear Water and Sewer Authority Kings Bluff	Moderate	2020		
Well 31: Queens Point	Moderate	2020		
Well 34: Sea Spray	Higher	2020		
Well 38: Fox Croft	Moderate	2020		
Well 34: Masonboro Forest	Lower	2020		
Well 44: Sea Pines	Lower	2020		
Well 45: Beacon Woods	Lower	2020		

The complete SWAP Assessment report for the Sweeney Water System may be viewed on the Web at: www.ncwater.org/?page=600. Note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this web site may differ from the results that were available at the time this report was prepared. If you are unable to access your SWAP report on the web, you may mail a written request for a printed copy to: Source Water Assessment Program — Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@ncdenr.gov. Please indicate the system name and number (CFPUA/Wilmington System, PWS ID# 04-65-010) and provide your name, mailing address, and phone number. If you have any questions about the SWAP report, please contact the Source Water Assessment staff at 919-707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

2021 Drinking Water Quality Results – PWS ID# 04-65-232, Richardson Water System

We routinely monitor for over 150 contaminants in your drinking water according to Federal and State laws. The tables below list all the drinking water contaminants that we detected in the last round of sampling for each particular contaminant group. The presence of contaminants does not necessarily indicate that water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2021. The EPA and the State allow us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Microbiological | Inorganic Contaminants

Contaminant (units)	Contaminant Type	Reporting Basis	Your Water	Sample Date	MCL/ MRDL Violation	Range Low - High	MCLG/ MRDL	MCL	Likely Source of Contamination
Total Coliform Bacteria	Microbiological Contaminants in the Distribution System	N/A	N/A	2021	NO	N/A	N/A	TT*	Naturally present in the environment
E. coli	Microbiological Contaminants in the Distribution System	Highest Monthly Percent of Positive Samples	0%	2021	NO	N/A	0	**	Human and animal fecal waste
Barium (ppm)	Inorganic Contaminants	Highest Compliance Result	0.0094	2019 2020 2021	NO	ND – 0.0094	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chromium (ppb)	Inorganic Contaminants	Highest Compliance Result	1.8	2019 2020 2021	NO	ND - 1.8	100	100	Discharge from steel and pulp mills; erosion of natural deposits
Fluoride (ppm)	Inorganic Contaminants	Highest Compliance Result	0.60	2019 2020 2021	NO	ND – 0.60	4	4	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizers and aluminum factories

^{*}If a system collecting fewer than 40 samples per month has two or more positive samples in one month, an assessment is required.

^{**}Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. If either an original routine sample and/or its repeat sample(s) are *E. coli* positive, a Tier 1 violation exists.

Disinfection Residuals Summary

Contaminant (units)	Reporting Basis	Your Water	Sample Date	MCL/ MRDL Violation	Range Low - High	MCLG/ MRDL	MCL	Likely Source of Contamination
Chlorine (ppm)	Highest Running Annual Average	1.44	2021	N/A	0.64 – 1.97	4	4	Water additive used to control microbes

Lead & Copper

Contaminant (units)	Reporting Basis	Your Water	Sample Date	# Sites Above AL	MCLG	Action Level	Likely Source of Contamination
Copper (ppm)	90th percentile	0.410	2019	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits
Lead (ppb)	90th percentile	6	2019	1	0	15	Corrosion of household plumbing systems; erosion of natural deposits

Disinfection Byproduct Compliance

Some people who drink water containing trihalomethanes (TTHM) in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer. Some people who drink water containing haloacetic acids (HAA5) in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection Byproduct	Your Water (LRAA)	Date Sampled	MCL Viola- tion	Range Low - High	MCL	Likely Source of Contamination
ТТНМ (ppb)	32.6	2021	NO	25.7 – 32.6	80	Byproduct of drinking water disinfection
B01	32.6	2021	NO	N/A	80	
B02	25.7	2021	NO	N/A	80	
HAA5 (ppb)	24.0	2021	NO	20.0 – 24.0	60	Byproduct of drinking water disinfection
B01	24.0	2021	NO	N/A	60	
B02	20.0	2021	NO	N/A	60	

Water Characteristics Contaminants

Secondary Substances, required by the NC Public Water Supply Section, are substances that affect the taste, odor, and/or color of drinking water. These aesthetic substances normally do not have any health effects and normally do not affect the safety of your water.

Contaminant (units)	Reporting Basis	Your Water	Sample Date	Range Low - High	SMCL
Iron (ppm)	Highest Compliance Result	0.54	2019 2020 2021	ND – 0.54	0.3 mg/L
Manganese (ppm)	Highest Compliance Result	0.026	2019 2020 2021	ND - 0.026	0.05 mg/L
pH (standard units)	oH (standard units) Highest Compliance Result		2019 2020 2021	7.1 – 7.6	6.5 to 8.5
Sodium (ppm)	Highest Compliance Result	32.0	2019 2020 2021	8.50 – 32.0	N/A
Sulfate (ppm)	Highest Compliance Result	20.0	2019 2020 2021	ND – 20.0	250 mg/L

Physical and Mineral Characteristics

Contaminant (units)	Sample Date	Your Water Average	Range Low - High	
Hardness (ppm)	2021	46	36 – 58	
Alkalinity (ppm)	2021	51	38 – 58	
Conductivity (umhos/cm)	2021	127	99 – 150	
Total Dissolved Solids (ppm)	2021	83.9	65.4 – 98.7	
Chloride (ppm)	2021	8.4	6.6 – 9.7	
Ortho Phosphate (ppm)	2021	0.86	0.41 – 1.41	
Total Phosphate (ppm)	2021	1.28	0.95 – 2.57	

Unregulated Contaminants

The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Per- and Polyfluoroalkyl Substances (PFAS)

Contaminant (units)	Sample Date	Your Water Average	Range Low - High	Health Information
GenX (ppt)	2021	0.117	ND – 0.233	NC-DHHS health goal is 140 ppt for GenX
PFOS (ppt)	2021	ND	ND	70 ppt EPA Health Advisory for Total Combined
PFOA (ppt)	2021	0.184	ND – 0.368	Concentration of PFOA and PFOS
PFTDA (ppt)	2021	0.320	ND - 0.641	None

Source Water Assessment Program (SWAP)

As part of the Source Water Assessment Program (SWAP), the North Carolina Department of Environmental Quality's Public Water Supply Section conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information, and a relative susceptibility rating of Higher, Moderate, or Lower.

The relative susceptibility rating of each source for the Richardson Water System was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings are summarized in the table below and continued on the following page:

Source Name	Susceptibility Rating	SWAP Report Date		
Well 15: Elkmont	Moderate	2020		
Well 19: Marsh Oaks	Moderate	2020		
Well 20: Old Marsh Oaks	Higher	2020		
Well 28: M	Higher	2020		
Well 4: White Road	Moderate	2020		
Well A: Castle Hayne	Higher	2020		
Well A: PeeDee	Higher	2020		
Well B: Castle Hayne	Higher	2020		
Well B: PeeDee	Higher	2020		
Well C: Castle Hayne	Moderate	2020		
Well C: PeeDee	Moderate	2020		
Well F: Castle Hayne	Lower	2020		
Well F: PeeDee	Lower	2020		
Well G: Castle Hayne	Moderate	2020		

Source Name	Susceptibility Rating	SWAP Report Date
Well G: PeeDee	Moderate	2020
Well H: Castle Hayne	Moderate	2020
Well H: PeeDee	Moderate	2020
Well I: Castle Hayne	Lower	2020
Well I: PeeDee	Lower	2020
Well J: Castle Hayne	Lower	2020
Well J: PeeDee	Lower	2020
Well K: Castle Hayne	Moderate	2020
Well K: PeeDee	Moderate	2020
Well L: Castle Hayne	Moderate	2020
Well L: PeeDee	Moderate	2020
Well P: PeeDee	Moderate	2020
Well Q: PeeDee	Higher	2020
Well 29: N	Higher	2020
Well 30: O	Moderate	2020

The complete SWAP Assessment report for the Richardson Water System may be viewed on the Web at: www.ncwater.org/?page=600. Note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this web site may differ from the results that were available at the time this report was prepared. If you are unable to access your SWAP report on the web, you may mail a written request for a printed copy to: Source Water Assessment Program – Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@ncdenr.gov. Please indicate the system name and number (CFPUA/NHC System, PWS ID# 04-65-232) and provide your name, mailing address and phone number. If you have any questions about the SWAP report, please contact the Source Water Assessment staff at 919-707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

2021 Drinking Water Quality Results – PWS ID# 04-65-137, Monterey Heights Water System

We routinely monitor for over 150 contaminants in your drinking water according to Federal and State laws. The tables below list all the drinking water contaminants that we detected in the last round of sampling for each particular contaminant group. The presence of contaminants does not necessarily indicate that water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2021. The EPA and the State allow us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Microbiological | Inorganic Contaminants

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct one Level 1 assessment. One Level 1 assessment was completed. In addition, we were required to take 0 corrective actions and we completed 0 of these actions. The assessment found no issues during the review process. Two positive total coliform samples were collected on June 7th, the repeat and triggered source water samples collected on June 8th were all negative indicating that the likely cause for the original positive samples were likely caused by human error during sampling.

Contaminant (units)	Contaminant Type	Reporting Basis	Your Water	Sample Date	MCL/ MRDL Violation	Range Low - High	MCLG/ MRDL	MCL	Likely Source of Contamination
Total Coliform Bacteria	Microbiological Contaminants in the Distribution System	N/A	N/A	2021	NO	N/A	N/A	TT*	Naturally present in the environment
E. coli	Microbiological Contaminants in the Distribution System	Highest Monthly Percent of Positive Samples	0%	2021	NO	N/A	0	**	Human and animal fecal waste
Fluoride (ppm)	Inorganic Contaminants	Highest Compliance Result	0.3	2019 2020	NO	ND - 0.3	4	4	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizers and aluminum factories

^{*}If a system collecting fewer than 40 samples per month has two or more positive samples in one month, an assessment is required.

^{**}Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. If either an original routine sample and/or its repeat sample(s) are *E. coli* positive, a Tier 1 violation exists.

Disinfection Residuals Summary

Contamin	Contaminan Type	Reporting Basis	Your Water	Sample Date	MCL/ MRDL Violation	Range Low - High	MCLG/ MRDL	MCL	Likely Source of Contamination
Chlorii (ppm	Reciduals	Highest Running Annual Average	1.04	2021	NO	0.23 – 1.85	4	4	Water additive used to control microbes

Lead & Copper

Contaminant	Reporting	Your	Sample	# Sites	MCLG	Action	Likely Source	
(units)	Basis	Water	Date	Above AL	L	IVICEO	Level	of Contamination
Copper (ppm)	90th percentile	0.330	2019	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits	
Lead (ppb)	90th percentile	5	2019	0	0	15	Corrosion of household plumbing systems; erosion of natural deposits	

Disinfection Byproduct Compliance

Some people who drink water containing trihalomethanes (TTHM) in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer. Some people who drink water containing haloacetic acids (HAA5) in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection Byproduct	Your Water (LRAA)	Date Sampled	MCL Violation	Range Low - High	MCL	Likely Source of Contamination
TTHM (ppb)	47.8	2021	NO	29.1 – 47.8	80	Byproduct of drinking water disinfection
B01	47.8	2021	NO	N/A	80	
B02	29.1	2021	NO	N/A	80	
HAA5 (ppb)	34.0	2021	NO	23.8 – 34.0	60	Byproduct of drinking water disinfection
B01	34.0	2021	NO	N/A	60	
B02	23.8	2021	NO	N/A	60	

Water Characteristics Contaminants

Secondary Substances, required by the NC Public Water Supply Section, are substances that affect the taste, odor, and/or color of drinking water. These aesthetic substances normally do not have any health effects and normally do not affect the safety of your water.

Contaminant (units)	Reporting Basis	Your Water	Sample Date	Range, Low - High	SMCL
Iron (ppm)	Highest Compliance Result	0.20	2019 2020	ND - 0.20	0.3 mg/L
Manganese (ppm)	Highest Compliance Result	0.031	2019 2020	ND - 0.031	0.05 mg/L
pH (standard units)	Highest Compliance Result	8.1	2019 2020	7.2 – 8.1	6.5 to 8.5
Sodium (ppm)	Highest Compliance Result	39	2019 2020	7.1 - 39	N/A

Additional Monitoring of Other Contaminants

In 2021, CFPUA added an orthophosphate blended product to the water treatment process for the Monterey Heights system. Orthophosphate is a corrosion-inhibiting mineral that is safe to drink and is already used in CFPUA's other water systems. For more information, see page 11 of this report.

Contaminant (units)	Sample Date	Your Water Average	Range, Low - High
Ortho Phosphate (ppm)	2021	0.81	ND – 1.71

Unregulated Contaminants

The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

Per- and Polyfluoroalkyl Substances (PFAS)

PFAS are found in a wide range of consumer products that people use daily such as cookware, pizza boxes, and stain repellants. Most people have been exposed to PFAS. Certain PFAS can accumulate and stay in the human body for long periods of time. There is evidence that exposure to PFAS can lead to adverse health outcomes in humans. The most-studied PFAS chemicals are PFOA and PFOS. Studies indicate that PFOA and PFOS can cause reproductive and developmental, liver and kidney, and immunological effects in laboratory animals. Both chemicals have caused tumors in animals.

Contaminant (units)	Sample Date	Your Water Average	Range Low - High	Health Information
GenX (ppt)	2021	0.031	ND - 0.367	NC DHHS health goal is 140 ppt for GenX
PFOS (ppt)	2021	0.020	ND - 0.235	70 ppt EPA Health Advisory for Total Com-
PFOA (ppt)	2021	0.111	ND - 0.526	bined Concentration of PFOA and PFOS
N-methylperfluoro-1- octanesulfonamidoacetic acid (ppt)	2021	0.062	ND - 0.742	None
PFPeA (ppt)	2021	0.108	ND - 0.768	None
PFPeS (ppt)	2021	0.083	ND - 0.998	None
6:2 FTS (ppt)	2021	0.100	ND - 0.693	None
Nafion Byproduct 1 (ppt)	2021	0.059	ND - 0.705	None
PFHxA (ppt)	2021	0.929	ND – 9.43	None
PFHxS (ppt)	2021	0.353	ND - 3.55	None
PFBA (ppt)	2021	0.111	ND - 0.817	None
PFBS (ppt)	2021	0.220	ND – 2.64	None
PFHpA (ppt)	2021	0.061	ND - 0.400	None
PFTeDA (ppt)	2021	0.041	ND - 0.488	None
PFMPA (ppt)	2021	0.249	ND – 2.99	None
PFMOAA (ppt)	2021	1.00	ND - 10.9	None
EVE Acid (ppt)	2021	0.104	ND – 1.25	None
Nafion Byproduct 2 (ppt)	2021	0.100	ND – 1.20	None
PFDoS (ppt)	2021	0.378	ND – 4.54	None
PFMBA (ppt)	2021	0.093	ND – 1.11	None

Source Water Assessment Program (SWAP)

As part of the Source Water Assessment Program (SWAP), the North Carolina Department of Environmental Quality's Public Water Supply Section conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information, and a relative susceptibility rating of Higher, Moderate, or Lower.

The relative susceptibility rating of each source for the Monterey Heights Water System was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings are summarized in the table below:

Source Name	Susceptibility Rating	SWAP Report Date
Hillside	Moderate	2020
Lords Creek	Lower	2020
Well # 1	Higher	2020
Well # 2	Moderate	2020
Well # 3	Moderate	2020

The complete SWAP Assessment report for Monterey Heights Water System may be viewed on the Web at: www.ncwater.org/?page=600. Note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this web site may differ from the results that were available at the time this CCR was prepared. If you are unable to access your SWAP report on the web, you may mail a written request for a printed copy to: Source Water Assessment Program – Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@ncdenr.gov. Please indicate the system name and number (CFPUA/Monterey Heights System, PWS ID# 04-65-137) and provide your name, mailing address, and phone number. If you have any questions about the SWAP report, please contact the Source Water Assessment staff at 919-707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

Cape Fear Public Utility Authority

235 Government Center Drive Wilmington, NC 28403 910-332-6550 | CFPUA.org

